"The Emerald Forest"

An Integrated Approach for Sustainable Community Development and Bioderived Energy Generation

> Fouad Teymour Department of Chemical & Biological Engineering Illinois Institute of Technology Chicago, IL

Collaborators

- Dr. Omar Khalil
- Aly Eltayeb
- Nicole Craig
- Dr. Said Al-Hallaj (UIC)

Chicago, Illinois, April 2010

Outline

- The Emerald Forest Vision
- Research Challenges and Obstacles
- Optical System Design
- Conclusions

The Emerald Forest Concept

- Biofuel production from massive/vertical farms growing marine algae biomass coupled with Desert reclamation.
- Integrates biomass production with a Living Community whose energy and water needs are fully Sustainable.
- Suitable for arid environments within reasonable distance (50-100 miles) from coastal waters.
- Addresses three Global Crises: Energy, Climate Change, and Overcrowding.

Why Biomass?

- Need for Elimination of Fossil Fuels
- Carbon Neutral/Reduced
- Dependence on liquid fuels
- Need for transition technology, but maybe long-term sustainable

- No need for Agricultural Landmass
- Minimal need for fresh water
- High Yield and productivity
- Biodiversity
- <u>Challenge</u>: Large scale production

Historical Context: NREL Aquatic Species Program, mid 70s to mid 90s

Why Massive / Vertical?

- Economy of scale
- Coupling with biofuel production technology
 - Demand/supply issues
 - Optimal plant size requires large amounts of biomass
- The need for process intensification
- Global needs are increasing
- Higher impact on fossil fuel displacement

Energy Crisis

- Continued dependence on fossil fuels non-sustainable
 - Diminishing supplies, volatile prices, and political leveraging.
- Fossil fuel conversion to materials brings a lot more value-added than Fossil fuel to energy.
- Sustainable routes to renewable fuels is needed

Climate Change Crisis

- Burning fossil fuels for energy to elevated levels of Carbon dioxide and GHG levels in the atmosphere
- Unprecedented levels of GHG predicted to lead to a catastrophic global warming phenomenon.
- Annual net loss of planetary green mass resulting from deforestation, desertification, and non-sustainable agricultural practices.
- Desertification destroys ecological biodiversity

Overcrowding and Prosperity Crisis

- Overpopulation and the need for decent quality, affordable housing is not a problem reserved for the developing world only.
- In the Developing World:
 - Severe overcrowding.
 - Inadequate housing developments.
 - Insufficient resources.
- In the Developed World:
 - The urban sprawl phenomenon is systematically depleting arable rural land that otherwise would be contributing to the betterment of quality of life.

The Emerald Forest Concept

MWRDGC

Challenges and Issues of Importance (I)

- Optical assembly design and optimization
- Photovoltaic integration
- Reactor Design Flow patterns and mixing
- CO₂ transient sequestration and nutrient delivery
- Organisms: pH compatibility, Fast growth, Robustness, Mixed cultures, diverse portfolio of products, Odor control
- Materials: Algae attachment UV stability

Challenges and Issues of Importance (II)

- Sustainable Architecture
- Sustainable salt extraction methodology
- Biofuel / energy delivery technologies
- Scheduling and Control MADCABS (NSF ITR Grant, PI: Çinar, Teymour, Hood)
- Process Integration and Design problem of a new nature – coupling a societal system with a production system.

The Ecology of the Emerald Forest

- A Modern-day desert oasis
- Living community
- Salinity-controlled ponds
- Fish and shrimp hatcheries
- Sustainable Agriculture
- Palm trees
- Switchgrass underfoot
- Bird Sanctuary
- Microclimate control/rainfall (???)

Reactor Issues

Algae Production in Open Systems

Artificial

PROs:Simplicity

smaller capitaleasier to build and operate

Natural

CONs:Low Productivity

- Lack of control on growth conditions
- Inefficient light utilization
- •Low mass transfer due to stagnant nature
- •Vulnerable to evaporative losses and contamination
- Reached their upper productivity limit

No light limitation (Diameter around 8 cm)
Lower mass transfer: fouling; nutrient, carbon gradients; high oxygen content
Flow induced by power-intensive pumping
Low productivity per unit area

Tubular Reactor

Algae Production in Closed Systems

Examples of Gas-Mixed Reactors

Growth concentrated in downer since light is not available in riser
Dark/light cycle frequency controlled by gas flow rate
Fluid circulation (controlled by gas bubbling and reactor geometry) to induce mixing
Maximum thickness of downer around 5-10 cm due to light attenuation

Dark/light cycle frequency controlled by gas flow rate and size of bubbles
Rising bubbles induce mixing
Maximum thickness of downer around 5-10 cm due to light attenuation

Illinois Institute of Technology

MWRDGC

Tree-like PhotobioreactorDesign

Reactor Flow Patterns and Mixing

- Gas lift over tall span could be challenging
 - Distributed CO₂ Injection along height
- Prevent Settling of Algae
- Provide the needed light/dark short cycle
- Recirculation patterns will depend on internal structure design. Will be simulated by CFD (FLUENT).
- Hydrostatic pressure difference could lead to unique bubbling characteristics for physical CO₂.

Design Target for Biomass Productivity

Traditional Biomass 4-5 tons/acre/year

Energy Crops 10-15 tons/acre/year

Algae 100-200 tons/acre/yearOR MORE

400 Biotrees/a Critical assumption 0.5 ton/tree/year $\rightarrow 1.4$ Depends on light penetration 3 m³/tree @ 0.01 olid content At maturation contains 30 wet kg \rightarrow 3 dry kg

Harvest 50% → means harvest once a day

200 tons/acre/year requires a doubling time on the order of I day, which falls in the range of reported kinetics for various species; especially with CO_2 assistance.

Carbon Dioxide Issues

CO₂ Sequestration

Underground in Geologic Formations

- Energy intensive, requires compression.
- Capacity is unlimited.
- Could be used for secondary oil production, if injected strategically.
- Long-term fate is unknown.
- Effect on stability of the formations is unknown.
 Underwater
- Much easier, but still requires energy for compression.
- Has a marked impact on ocean acidity, especially in a specific region.
- Interference with marine life can lead to even more environmentally disastrous results.

CO₂ Sequestration In Biomass Form

- Plant Biomass has been fixating Carbon for millions of years.
- Requires Carbon source and solar energy.
- Process is Carbon Neutral.
- The challenge is in transportation.
- Two avenues for solution:
 - Locally integrated power production for a portion of the biomass with immediate recycling of CO₂
 - Development of technologies for transient sequestration of CO₂ in aqueous media.

Transient CO₂ Capture and Delivery

• Aqueous medium in the form of

- Physical carbonation
- Chemical fixation (NaHCO₃, KHCO₃)
- Many species capable of utilizing both forms (Botryococcus braunii, Tetraedron minimum, Chlamydomonas noctigama, ...)

• Challenges:

- Offshoot CO₂ usually hot, sometimes pressurized
- Liquid medium requires intermediate process steps
- High temperature sorbents (2-step process)

Other Issues

Biofuel Technology

Sustainability requires TOTAL biomass utilization. Produced biomass can be used along multiple routes:

- Biodiesel
- Fermentation to bio-ethanol, bio-butanol
- Biomass gasification
- Catalytic Hydro-reforming
- •Nutrient supply for fish and shrimp hatcheries.

Sustainable Architecture

Example Technology BIPV

- Building Integrated PhotoVoltaics
- Uses Windows, facades, building skin
- Can be enhanced with holographic elements

BIPV with Holograms

Chicago, Illinois, April 2010

Illinois Institute of Technology

Sustainable Architecture (Other)

- Wind-integrated buildings
- Geothermal heat pump for heating/cooling
- Green roofs
- Storm water collection and reuse
- Solar thermal collectors
- Thermal storage management with phase change materials
- Sustainable building materials
- Recycled polymers for paints and coatings
- Energy efficient windows
- Advanced control systems

Optical System Design

Objectives

- Design a collection system that maximizes light capture and utilization at all times of day.
- Design and optimize the light distribution system to achieve near-even distribution, avoid dark spots, and minimize shading effects.

Optical System Components

- Transmitting leaves + photovoltaic leaves
- Total internal reflection elements
- Holographic elements
- Internal illumination shaft
- Illumination at varying depths

Optimization of Light Distribution

MWRDGC Chicago, Illinois, April 2010

Modeling Light Propagation in Scattering/Absorbing media

Ray tracing (Monte Carlo)

- Fire a large ensemble of light rays
- Trace each ray through reflection, refraction, and scattering, until it is either absorbed or leaves the bounds of the system
- Calculate light intensity distribution for the ensemble
- Computationally intensive

Scattering and absorbing phenomena are modeled probabilistically

Fermat's Principle:

"Light rays follow a path that is an extremum compared to other nearby paths"

MWRDGC Chicago, Illinois, April 2010

Modeling Light Propagation in Scattering/Absorbing media

Finite Volume with Discrete Ordinates

- In finite-volume scheme, problem is discretized spatially and angularly
- Scattering and absorption are directly modeled in each control solid angle and volume
- Accuracy of the results depends on the spatial and angular grid used
- Qualitative results can be obtained in relatively short computational times

MWRDGC Chicago, Illinois, April 2010

FVDO Model solution in FLUENT

Grid Geometry and Discretization

- Spatial Discretization: Tetrahedral elements
- Angular Discretization to represent directional dependence of radiation at each spatial node; each octant is divided into $N_{\theta} \times N_{\psi}$ solid angles

Assumptions

- Wavelength independence; isotropic scattering
- Integration over each solid angle in each CV
- Outward fluxes approximated by upwind differencing

Solution Strategy

- Equations coupled by inscattering term (dependent on incoming radiation from other directions), and by fluxes crossing CV surfaces (which are approximated in terms of the intensities in neighboring cells)
- Iterative solution is used

<u>Advantage of this approach</u>: Light modeling and hydrodynamic CFD can be integrated in the same simulation environment, with the same grid discretization.

Diffuse fraction is material dependent (f_d)
NO absorption, NO emission

Wall Boundary Conditions in FVDO

Semi-Transparent Walls

MWRDGC

MWRDGC Chicago, Illinois, April 2010

Simple Waveguides: Modeling & Testing

Straight cut

Bevel cut

MWRDGC Chicago, Illinois, April 2010

Results: Simple Waveguide

Normal Incident Light rays, 200 W/m²

Notice scattering resulting from imperfections

Illinois Institute of Technology

MWRDGC Chicago, Illinois, April 2010

Results: Simple Waveguide

45° Incident Light rays, 200 W/m²

Results: Scalability

Normal Incident Light rays, 200 W/m²

0 W/m²

- guide length has no considerable effect on the efficiency of light transfer
- It is possible to model shorter versions and expect results to be similar for a longer waveguide

MWRDGC Chicago, Illinois, April 2010

Axial and Radial Distributions

Illinois Institute of Technology

Chicago, Illinois, April 2010

MWRDGC

Results: Bent Waveguides (redirection) Normal Incident Light rays, 200 W/m²

- Large losses
- Most transmission is at junction
- Need for optical insulation

Effect of Insulation with reflective coating

MWRDGC

Chicago, Illinois, April 2010

Chicago, Illinois, April 2010

MWRDGC

Results: Compound Y-shaped Waveguide

Illinois Institute of Technology

MWRDGC Ch

Chicago, Illinois, April 2010

MWRDGC Chicago, Illinois, April 2010

Results: Compound Y-Shaped Guide

MWRDGC

Chicago, Illinois, April 2010

1.73e+02	
1.65e+02	
1.56e+02	
1.47 e+02	
1.39e+02	
1.30e+02	
1.21e+02	
1.13e+02	
1.04e+02	
9.53e+01	
8.66e+01	
7.79e+01	
6.93e+01	
6.06e+01	
5.20e+01	
4.33e+01	
3.46e+01	
2.60e+01	_
1.73e+01	Ť
8.66e+00	<u>لك</u>
0.00e+00	

Light distribution on outer surface of guide

MWRDGC Chicago, Illinois, April 2010

Results: Y-shaped guide, 45° incident light

Outer surface collects a lot of light, but delivers at junction below critical angle

MWRDGC

Chicago, Illinois, April 2010

Results: Photobioreactor with Algae Suspension

Results: PBR with Algae Suspension

Light Collection System - Target

- Modular design approach
- Need optimized Junctions and compound guides
- Genetic algorithm for optimization by addition and mutation of elements

Tree in a Lab Photo-Bioreactor

GC Chicago, Illinois, April 2010

MWRDGC

MWRDGC

Chicago, Illinois, April 2010

Tracking Growth of Chlorella Pyrenoidosa in PBR-1

Direct Monitoring in Reactor

Monitoring Transmitted Illumination intensity at the surface of the reactor is indicative Of algal growth

Growth of CP at a constant Low Salinity (400 mg/l) and various pH values

Medium pH increases and then leveled off. An inflection point around DOD of 1. Within an alkaline pH range 7.47 to 9.75

Summary and Conclusions

- The Emerald Forest Concept has a high potential for alleviating the energy and climate changes crises, and for desert reclamation into sustainable living communities.
- Many challenges exist that require broadspanning parallel research efforts.
- FVDO modeling was demonstrated for light propagation
- Can lead to efficient genetic optimization algorithms using a modular permutation approach

We gratefully acknowledge financial support from EPI Inc., Chicago and WISER at IIT

MWRDGC Chicago, Illinois, April 2010